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I. INTRODUCTION

The problem of the cylindrical antenna of appreciable diameter has received

considerable attention from a number of investigators. Three approaches have

been used in the literature. These are (a) Hallen's asymptotic solution to the

approximate integral equation,1 and King's modification of it, 2 (b) Storer's

variational solution to the approximate integral equation,3 and (c) Schelkunoff's

approximate modal solution. 4 This report re-formulates the problem in terms of

a mathematical model for which an exact solution is possible. The method of

solution is outlined. A solution using Rumsey's reaction concept,5 which is a

straight forward approach to the variational formulation, is also given.

Interest is restricted to steady-state, harmonic time-varying fields. All

time-varying quantities are represented in terms of sinors.6 For a scalar

quantity,

v = V2/ IVI sin(wt + a) = Im(-r2 V e j t), (I-i)

where v is a time-varying scalar and V = IVl"ed is the sinor of v. For a vector

quantity,

&= Im(jfE e jCt) , (1-2)

where is a time-varying vector and E is the sinor of 6. Eq. (1-2) should be

interpreted to mean that the components of F_ are related to the components of

E according to Eq. (I-1).

The electromagnetic field is represented in terms of two vectors, the

electric intensity and the magnetic intensity, the sinors of which are E and

H, respectively. The characteristics of a region are expressed in terms of

the parameters a-, e., and j., called the conductivity, capacitivity, and induc-

tivity, respectively. Sources are represented in terms of impressed electric
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current density and impressed magnetic current density, the sinors of which

are denoted by I and i, respectively. The field equations in terms of sinors,

extended to include impressed currents, are

V xH- (J= + O_+J , (1-3)

-VxE= jcL H + M. (1-4)

The right hand side of Eq. (1-3) is the sinor of the total electric current

density, ;t, and the right hand side of Eq. (I-4) is the sinor of the total

magnetic current density, M_. In integral form, the field equations are

dl = Jt ds = It (1-5)

- d = Mtds=t, (1-6)

where It is the sinor of the total electric current through the surface S

encircled by the contour C, and Kt is the sinor of the total magnetic current.

The voltage is defined to be the line integral of the electric intensity.

Thus, the relation

V = J'E dl , (I-7)

gives the sinor of a voltage between the "terminals" of the curve C. The value

of V is substantially independent of all more or less direct paths if taken in

a source-free region and if the terminals are close together. The conduction

current is defined to be the surface integral of the conduction current density.

• Thus, the relation

I- sE • ds ,

gives the sinor of the conduction current. The value of I in a "wire" is

substantially independent of all more or less tightly stretched surfaces if
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the cross section is small. The impedance Z between two wires close together

is defined to be the ratio V/I, where V is the sinor of the voltage between

the wires and I is the current in the wires.

As a mathematical aid, it is convenient to introduce auxiliary functions,

called vector potentials, in terms of which the field can be expressed. For a

linear, homogeneous media, if M = 0, one can write

H = Vx A , ('-9)

where A is called a magnetic vector potential. Note that A is not unique,

but is determined only to within the gradient of a scalar since V xV = 0.

One can also use an electric vector potential for regions in which J = 0, but

this is not necessary in this report. From the field equations, E in terms of

A is given by

(jax + o)E= x x A. (I-10)

A unique solution for A in terms of impressed electric currents in a region

homogeneous everywhere is the potential integral solution.7 A solution

appropriate to cylindrical coordinates is given by Az = 4, where * is a solution

to the scalar wave equation.
8

A powerful method of reducing electromagnetic problems to simpler mathe-

matical models is the equivalence principle.9 In the literature, the same

results are usually obtained through the use of Green's functions, but the

equivalence principle is usually more direct. A concise statement of this

principle is as follows. Consider a surface S enclosing the sources of an

electromagnetic field, E.H. Now consider a mathematical model consisting of

the same surface S and with the same matter (a, e, the same) external to S.

On S are impressed the surface currents

S (-11)

M E x n.9 (1-12)
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with the source in the original problem removed. One now has the same field

EH external to S and zero field internal to S. Since there is no field within

S, one can place any material desired internal to S without changing the field

external to S. Particularly useful choices of matter to place within S are

(a) free space, (b) a perfect electric conductor, and (c) a perfect magnetic

conductor. For case (a), one can use the potential integral solution.7 For

case (b), it can be shown that the electric currents produce no field, giving

a representation in terms of only . For case (c), the magnetic currents pro-

duce no field, giving a representation in terms of only J.

In this report, use is made of the theory of generalized Fourier transforms.
1 0

A transform pair is given formally by

F(w) = f F(z) e-jwzdz, (1-13)
-cc

001 r ejwz
F(z) = F(w) e dw. (I-14)

-Co

Eq. (1-13) is called the transformation integral, and Eq. (I-14) is called the

inverse transformation integral. The existence of F(w) implies certain restric-

tions on F(z). It can be shown that the transforms of the field vectors exist

11
if the sources can be contained in a finite volume. A theorem which finds

application in this report is Parseval's theorem for transforms. This is

00 00

F(z) G(z) dz = F(w) G(-w) dw. (1-15)
-00 0

As defined by Rumsey,5 the reaction between two sets of sources, Ja, a

^b -^band J ,M , is

(a, b> 51 jj(- 11b_. dv, (1-16)

where E b,H b is the field produced by the b sources. If the sources can be

contained in a finite volume and if the medium is linear, the reciprocity
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theorem 12 states that

<a,b> = <b,a> . (1-17)

The self reaction of a source is that given by Eq. (1-16) for a = b. Note

that the self-reaction of a circuit source is VI. If a set of sources are

multiplied by some constant, the reaction is increased proportionately, that is

<Ka,b> = K<a,b> . (1-18)

Rumsey presents a method of formulating problems to obtain an approximate

solution which is "best in "he physical sense". 5 The result is essentially

a stationary expression, insensitive to small variations in a current

distribution about the correct distribution.

II. FORMULATION OF THE PROLEM

The cylindrical antenna is considered to consist of two conducting rods,

separated by a small gap, and excited by a generator connected across the gap.

This is illustrated in Fig. 1. The generator is assumed to be physically

small so that it can be contained within the cylindrical gap. For this report,

the rods are taken to be perfect conductors.

The equivalence principle is now applied to the cylindrical surface just

enclosing the antenna, including the gap generator. Choosing to back the

equivalent currents by a perfect conductor, one has the problem exactly repre-

sented by a single conducting rod with a loop of impressed magnetic currents

encircling what was formerly the gap. This is shown in Fig. 2. The self-

reaction seen by the magnetic currents will be the same as that seen by the

generator in the original problem.

Another representation of the problem is in terms of both the equivalent

electric and magnetic currents over the cylinder, with both the conductor and
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generator removed. This is called the free-space representation, and is shown

in Fig. 3. The equivalent electric currents of the free-space representation

are equal to the conduction currents on the rod of Fig. 2.

For the mathematical analysis, the coordinate system and dimensions

shown in Fig. 4 are used. The coordinates are the usual ,o, $,z circular

cylindrical ones. The total length of the antenna is 2b, its diameter is

2a, and the length of the gap is 2c. Only antennas symmetrical with respect

to the plane z = 0 are considered.

It is noted that the problem is symmetrical about the z axis. One can

conclude therefrom that the impressed magnetic currents of the equivalent

problems must flow only in the i-direction. The conduction currents along the

side of the cylinder of Fig. 2, and consequently the impressed electric currents

of the free-space representation, must flow only in the z-direction. Over

the ends of the cylinder, the electric currents must flow only in the p-direc-

tion. If the diameter of the cylinder is small, the effect of the currents

on the ends of the cylinder is known to be small. There are two types of

approximations that can be made because of the smallness of the "end effects".

One is to formulate an approximate equation neglecting the end currents, as

was done by Hallen. The other is to formulate exact equations for the

approximate model obtained by considering the conductor of Fig. 2 to be

hollow. As pointed out by Schelkunoff,13 only the latter type of formulation

can be expected to have an exact mathematical solution.

Primary interest is in antennas having a small gap. For this case, the

exact distribution of the equivalent magnetic currents is unimportant, the

solution being essentially the same for all well-behaved distributions. It

is assumed that Ez in the gap of the original problem, and consequently M

in the equivalent problem, is a constant. Applying Eq. (1-6) to a path just
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enclosing the magnetic currents, and making use of Eq. (1-7), it can be shown

that

MO(z) -v ec

This is taken to be the source in the mathematical problem. Of primary

interest is the input impedance Z, or the input admittance Y, of the antenna.

This is the impedance or admittance seen by the source. It can be expressed

in the following ways:

1 V_(ss> V2  
(12

1 12. (II-2)
Z y- - 1 2 - <s,s>'

where <s,s) represents the self-reaction seen by the source. Since the source

is expressed in terms of magnetic currents, the preferable form for a reaction

solution is the last one on the right side of Eq. (11-2). If an exact

solution is obtained, all forms are equivalent. There is also some interest

in obtaining the current distribution along the conductor, since it is

primarily this which determines the radiation pattern.

III. THE TRANSFORM EQUATION

Considering the conductor of Fig. 2 to be hollow, an exact transform

equation can be obtained for the problem. From symmetry considerations, it

follows that the field will be T14 (transverse magnetic) to the z direction,

and independent of 0. General formulas for a symmetric TM field from a

cylinder of currents are derived in Appendix A. These involve the transforms

of the field components in terms of the transforms of the electric and magnetic

currents. The magnetic current is taken to be the known source, given by

Eq. (II-1). The transform of M (z) is calculated to be

M-,(w)--V sin wcM M V VC(III-l)
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Substituting this into the results of Appendix A, one has for the transform

equation to the problem

E(w) = F(w) + K(w) J(w) , (111-2)

where the known functions are

K(2) 2_..7)H (2) (a..'- ) Jo (a (111-4)

and the unknown transforms are

b ejwz

M(w) - Jz(z) e-1 dz, (111-5)

E(W) = ( + ) Ez(a,z) e-jWZdz. (TII-6)

Eq. (111-2) is an exact equation for the mathematical model, and can be

expected to have a precise solution. It can be shown that if 0 is

considered to be complex (corresponding to a dissipative media) all terms

of Eq. (111-2) are regular in the strip jIm(w)j < lim(1)1. As indicated by

Eqs. (111-5) and (111-6), the inverse transforms of J(w) and E(w) exist

over mutually exclusive intervals on z. The equation is similar to those

previously solved by a modification of the Wiener-Hopf method of solution,

except for one important difference. The inverse transforms of the unknowns

in Eq. (111-2) do not extend over semi-infinite intervals on z. For the

benefit of anyone interested in attempting a solution of Eq. (111-2), the

following is an outline of a procedure which shows some promise. Due to the

complexity of the problem, the author has been unable to obtain an exact

solution.

Suppose that K(w) can be divided into the two functions

K(w) = K.(w)/K2(w) (IiT-y)
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such that

J i(w) K2(w) ejwz dw = 0 , Izi . b, (111-8)

00

fJ(w) Kl(W) ejwz dw = 0 , jzj > b. (1II-9)

If K1 and K2 can be found, then an explicit expression for the solution can

be written, obtained as follows. Eq. (111-2) can be put into the form

K2 (w) E(w) - K(1(w) J(w) = K2(w) F(w) , (IIl-10)

where the inverse transform of the first term exists only over the interval

Szj> b and that of the second term exists only over the interval jzJe b.

Transforming the inverse transform of Eq. (III-10) over the interval Izl .e b,

and performing the z integration then gives

w(w) - K (s) F(s) sin(-Wlb ds. (I-ll)
-AKMw) j 2  s-w

00

Since J(w) is a finite transform, the current distribution in Fourier series

form is given by the inversion formulajvn

JzZ - J(21b) e j " z / b , zj--b •(111-12)

This can be reduced to a cosine series since Jz) is an even function. A

solution such as outlined above would be quite complicated, but might simplify

for small diameter antennas with narrow gaps.

Another method of solution which appears fruitful at first consideration

is as follows. Suppose that one represents Jz(z) by a Fourier series,

Eq. (111-12), with the coefficients J(n/b) to be determined. For the true

solution, Ez(a,z) is zero for z < Ibi. For any other value of Jz(z), a

mean square error can be represented by

2b- *fEz(a'zi Ez(az) dz = M (111-13)
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For the true solution, M is zero, that is M is a minimum. Thus, M is to be

reduced to a minimum through the choice of J(nx/b). Setting 6M/6j(r/b) = 0

gives equations for the determination of the J(nE/b). For an exact solution,

there are an infinite number of coefficients to determine, giving an infinite

number of simultaneous equations. This condition is what is referred to as
14

"non-final determination of coefficients" by Sommerfield, and is of no

practical value. An approximate solution could be obtained by taking a

finite number of terms in the series, or even taking some other functional

approximation for Jz(z), but the reaction approach presented in the next

section appears to be better suited for this purpose.

IV. A REACTION SOLUTION

Consider the cylindrical antenna to be represented in terms of a

conductor encircled by a loop of magnetic current, as shown in Fig. 2.

The input admittance, from Eq. (11-2), is given by

= (IV-l)
V2

Since the magnetic currents are directly proportional to V, it follows that

<s,s>-' V 2, and Y is independent of the input voltage. Since the form of

current distribution along the conductor is known approximately, one can expect

a variational formulation of the problem to give accurate values of Y. The

equation yielding the best answer can be derived in a straight forward manner

by following Rumsey's reaction approach.
5

In terms of the free-space representation of the problem, Fig. 3, the

total reaction seen by the source is the free-space self-reaction of the

magnetic currents, <mm>, plus the free-space reaction between the magnetic

and electric currents, <m,J> • That is,

<s,s> = <m,m> + <mJ) . (IV-2)
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The term (m,m> involves only the magnetic currents and therefore depends only

on the dimensions of the gap. The term (m,j> involves both the electric and

magnetic currents, and thus depends on the dimensions of the gap and on the

overall dimensions of the antenna, that is, on the dimensions of the conductor

of the original problem, Fig. 1. Substituting Eq. (IV-2) into Eq. (IV-l),

it is seen that the input admittance is the sum of two terms,

Y=Y +Yg c , (IV-3)

where

= <M.m> (IV-4)

c V 2  '

The term Y will be called the gap admittance, and the term YC will be calledgc

the conductor admittance. Since the magnetic current is taken to be the source,

the Y can be calculated exactly. The problem is to determine the best
g

approximation to Yc The quantity 1/Y c is what most of the previous investi-

gators have called the input impedance, although the necessity of including

the effect of the gap has been recognized.

Along the cylinder coinciding with the original boundary of the antenna

(just inside of the magnetic current), the tangential component of the

electric intensity is zero. It follows that the tangential component of E

along the cylinder due to the electric currents alone is just the negative

of that due to the magnetic currents alone. Thus, even though the value

of J is not known, the tangential component of E produced by J is known over

the cylinder. The reaction between the unknown currents J and any assumed

distribution of electric currents j can therefore be calculated. It is

precisely the negative of the reaction between M and jx, that is,



-13-

xJ>= - <x,m> (iv-6)

for an assumed electric current over the antenna boundary.

Now consider the question of how to represent the current along the

conductor. One suggestion would be to express the current in a Fourier

series, and then determine the coefficients by the reaction approach. This

would again involve an infinite set of simultaneous equations in an infinite

number of unknowns, being of little practical value. A finite number of terms

of the series might be used for an approximate solution, but again a sufficient

number of terms would entail a prohibitive amount of work. It is desired to

approximate the current with as few functions with unknown coefficients as

possible. This can be done by expressing the current in terms of the modes

of a cylindrical conductor. Stratton shows that the only symmetric mode

external to a perfectly conducting cylinder travels unattenuated with the

speed of light. 15 There will be a discontinuity in the current at the

gap, but if the length of the gap is small, the discontinuity can be taken

at z = 0. From symmetry conditions, the current must be an even function of

z. Thus, for a solid conductor, neglecting the currents over the ends of

the conductor, the current will be of the form

Jz(z) = Ae-J *z + BeAZI . (IV-7()

This involves two adjustable constants, A and B. For a hollow cylinder,

in addition to the external modes, there will also be a set of internal

modes, corresponding to the symmetric TM circular waveguide modes. For small

diameter antennas, these modes are all beyond cut-off, and rapidly attenuated.

There is also no discontinuity in the internal modes at z = 0, since the

boundary conditions are continuous in that region. Thus, for-a hollow cylinder,

J (W, = Ae-JOIZI + BejP lzl + 0 C cosh z , (IV-8)

n=I



where the a are the propagation constants for the T~on waveguide modes.

The internal modes are appreciable only in the immediate vicinity of the

ends of the conductor, but it is nece ey to include at least one of them

in the reaction formulation of the problem.to satisfy the condition Jz (±b)

= 0. Then the approximation (IV-8) again reduces to one involving two

adjustable constants.

The reaction formulation for <m, j> is now derived as follows. The

current distribution is represented by

_ a + BJv (IV-9)

where Ja denotes an approximate current on the cylinder consisting of the

two partial currents Ju and J v, with adjustable constants A and B. One

can enforce the conditions

<u,a> = <u,j> = - <u,m> , (IV-IO)

<v,a> = <v,j> = - <v,m> , (IV-II)

that is, j u and J v look the same to J a as they do to J. Eqs. (IV-iO) and

(IV-ll) involve only free-space reactions between known sources, and can
thus be calculated. Substituting for Ja from Eq. (IV-9) gives the pair of

equations

A<u,u> + B(u,v> = - <u,m> , (IV-12)

A<v,u> + B(v,v> = - <v,m) (IV-13)

By reciprocity, (u,v> = <v,u). Solving for A and B by Cramer's rule, one

has

A = <U.V>V,m) - <v,v><um> (IV-14)
<u,u>(v,v> - <u,v>2

B-- (u,v'>u,m) - 4uu>(vm> (Iv-15)
<u,u)<v,v> - <u,v>
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The reaction of interest is now

<m, j> = mj,m>K<a,m) = A<u,m> + B<v,m>

= (vv)<uIm> - 2<u,v?um>(Vym> + <u,u)(v,m>
2

(u,v>2 _ <u,u>(v,v> (IV-16)

This is the best approximation to <m,j> using two adjustable constants.

Substituting Eq. (iv-16) into Eq. (IV-5) gives the desired variational

expression for Y
C

V. EVALUATION OF THE REACTIONS

Appendix A gives general expressions for the field from a distribution

of z-directed electric currents and O-directed magnetic currents. Although

all currents are considered to be on the cylinder v= a, the magnetic currents

are taken to be an infinitesimal distance outside of the magnetic currents.

From Eq. (1-16), the reaction between the magnetic currents and any source

of interest is

00

<mx> = -2ga fM$(z) HO(a,z) dz. (V-l)
jx

If HO is the magnetic field from a distribution Jx on the cylinder, one
z

must take the value of Ho just outside of the cylinder since there is a

discontinuity at o = a. Making use of Parsevalls theorem, Eq. (1-15),

one can express Eq. (V-1) as

<m,x> = - M ) a,w) (V-2)

where M and H are the transforms of M and H. From Appendix A, one has for

the source M-,

-(aw) =-- MO(w) Hi(2)a 2 J (a
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and for a source

zo

First, consider the self-reaction of the magnetic currents. The

general expression for this, from Eqs. (V-2) and (V-3), is

-m (w) - ) ( 2 ) J, (a )d. (V-5)

Substituting for M from Eq. (III-1), one has for Y, Eq. (V-4.),

2a3 siv' wc _a~ w2 .) J( 1 ~Yg = L2 ) dv

This is valid for any size cylinder. For a thin antenna, one can use the

approximate formulas for Bessel functions of small argument in Eq. (v-6).

This gives

2 c rsn vcl 2  :a2
S[ w c ] dv=ja- 2 (V-7)

It is noted that this is just the capacitive susceptance of a capacitor

having the dimensions of the gap. This result is to be expected since

circuit concepts apply if the gap dimensions are small compared to wavelength.

Nov consider the reactions <mr,x> for a current J' along the cylinder.

From Eqs. (V-2) and (v-4), one has in general

.g2 c_ sin wc .2 2) H(2) -<x2 Jz'm> 2 ( WC (a J0 (a -v )dw.

-= (v-8)

Again this reduces to a simple expression if the gap dimensions are small.

If 5z(W) = O(wvc), a >i, as w -->a), one can use the approximations for

small argument Bessel functions and let sin wc/wc 1 1. This gives

<x,m> = aV { 3z(-) dv = 2,&V Jx(o) . (V-9)

This is recognized as the reaction for a circuit source, VI, which is to

be expected if the gap dimensions are small.
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For the reactions between electric currents, if the conductor is taken

to be hollow, one has from Eq. (1-16),

<x,y> = 2a fjx(z) Ey(a,z) dz, (V-lO)

where Jz and Jy are any two distributions of electric current along

the cylinder O = a. Again using Parseval's theorem, Eq. (1-15), one

has 0

<x,y> = a f7(-w) E(a,w) dw. (V-ll)
-04

From Appendix A, the transform of the electric field from a distribu-

tion of electric current is

E (a,w) = F ~-- (w) (P2,2 R 2(a pi-w ) Jo(ai i1 _w (V-12)
z ~ 2m* z0

Thus, the general formula for the reactions involving electric currents

is

(x~y>= ~- %~(_v) 57w)(p2 _w2 ) H1(2) (a j ~ w
<Q.Y Jo z z Joa-V'P-wO) w

- (v-15)

As shown in Section IV, the current along the cylinder should be of

the form of Eq. (IV-8). The functional form of the current chosen for the

reaction approach must go to zero at z = +b, else the self-reaction as

given by Eq. (V-13) becomes infinite. This is to be expected since it

would require an infinite Ez to support a finite Jz at the ends of a hollow

cylinder. A choice which consists of the two external modes plus the

dominant internal mode is

,,z(z) - sin P(b - Izl), (v-14)

J a(z) = cos P(b - IzI) - cosh z (V-15)

where a is the propagation constant for the 210, mode. For small cylinders,

a is very large and
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Z(0) - COB Pb, (v-16)

for any antenna of appreciable length. Defining the integrals

<x,y>- (21a) 2 _ IX , (V-17)

one has from Eq. (V-13),

= .. L [u(w)] (132-w) 11(2 (afp)J ayp'--v2 4w, (-8

LTU 1 -VW(.W 2) H1(2)( (a pp; ) J (aip Q2 ) dv, (V_19)

=v 8,t f [jP':]2 )p2 H()at~ J(aJQw ) dw. (v-20)

These simplify to some extent for small diameter antennas, but the details

are complicated and outlined in Appendix B. The real parts of the Ixy

integrals are independent of a if the antenna is thin.

Now substituting the various results of this section into Eqs. (IV-16)

and (IV-5), one has for the conductor admittance

IuuCos2b + Iv sin21b - luvsin23b

uu uv u

The complete expression for the input admittance to the antenna is given

by adding Yg, Eq. (V-7), to YC. Considering the I integrals, it is seen

that for small Pa, I becomes very large compared with Iuv and Iuu

Thus, except in the region of small sinlb (corresponding to the region of

resonance), the conductor admittance is given by

sinUb (V-22)

This is precisely the result that is obtained from the reaction approach

using one adjustable constant, and approximating the current by Eq. (V-14).
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VI. DISCUSSION

The evaluation of the I in the reaction or variational solution
xy

to the cylindrical antenna is a difficult task. As shown in Appendix B,

the real parts are for all practical purposes independent of the antenna

diameter, and are fairly simple to evaluate. However, the imaginary

parts are complicated functions of both Pa and Ob, and no simple expressions

have been obtained for them. Evaluation by numerical integration is possible,

but would be an arduous job.

A comparison of the solution presented in this report to previous

solutions can be made. Consider Storer's variational solution.3 This

solution used the same approximate integral equation as used in King's

solution. In Appendix C, it is shown that Storer's solution can be put

into the same form as Eq. (V-21), except that the I are slightly different.xy

They are given by Eqs. (V-18) through (V-20) with J (a - ) replaced

by unity. This difference would show up only in the imaginary part of Iw,

since the integrands of the other two integrals become negligible before

1 differs appreciably from unity. It is difficult to predict quantitatively

what the difference in the two solutions would be, but any difference

would be evidenced only in the vicinity of resonance. The source of this

difference is due to Storer's approximation of the integrand of the starting

equation, which is inaccurate in the vicinity of the ends of the conductor.

Thus, the "end effects" are obscured, and it is no longer necessary to

require Jx(z) to be zero at z = +b. Instead of assuming Eq. (V-15) one

could now take Jr(z) = cos P(b - Izj), without affecting the evaluation of

I x. Storer gives a comparison of his solution to that of King, and shows

that the two agree reasonably well.

There are some experimental values of antenna impedance in the region

of resonance available which indicate that both Storer's and King's solu-



-20-

tion are reasonably accurate.17 Before attempting numerical calculations

for the solution of this paper, it is hoped that a simpler method of

evaluating the imaginary parts of Ixy can be devised.
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APPENDIX A

The Field from a Cylinder of Currents

It was shown in Section II that the problem of the cylindrical antenna

can be reduced to a cylinder of impressed currents radiating into free-

space. It was also concluded from symmetry considerations that the magnetic

currents flow only in the $ direction and the electric currents only in the

z direction (if the conductor is taken to be hollow). Such a configuration

gives rise to a field that is TM to the z direction.

A circularly symmetric TM field in a homogeneous, source-free region

can be expressed in terms of an A potential having only a z component

given by
8

Az( ,z) = Jf(w)Z 0 (PV e- j wz dz. (A-1)

DeO

The function Z is a solution to Bessel's equation, being Jo if the axis

0 is included, and H(2) if the region A -- go is included. The function
f(w) is to be determined from boundary conditions.

Consider now a distribution of $-directed magnetic currents and z-

directed electric currents on a given cylinder /o = a. Let M denote

the surface density of the magnetic current, and Jz denote the surface

density of the electric current. Let a superscript e denote a quantity

external to the cylinder, and i denote one internal. The boundary con-

ditions at the given cylinder are

J z(z) (az) HO(a,z) . (A-2)

MO(z) = EZ(a,z) E E (a,z) .(A-3)

The field components of interest are

H (pZ) = - A ,z) (A-4)
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JME E(,OZ) ( 2 -5)

with A as given by Eq. (A-1).
z

It can be shown that the Fourier transforms of the field vectors exist
11

if the sources can be contained in a finite volume, or, more generally,

if the sources are transformable. Since the Fourier transform is unique,

Az( P ,w) = f(w) Z0 (YP"A ) (A-6)

is the transform of Az(/O,z). From Eqs. (A-4) and (A-5), it follows that

,UeE ( o,w) -2.2) A ( w) ,(A-8)

where Ez abd H denote the transforms of Ez and HO. From Eqs. (A-2) and

(A-3), it follows that

iz(W) = e(aw) - H(a,w) , (A-9)

M (w) = iZ(a,w) - E z(a,W) , (A-10)

where j and MOare the transforms of JZand M 0*

NoW the expressions for the quantities of interest can be written out

explicitly for the two regions. Denoting the unknown f for the internal

i
region by f (w), one has

A( zz ,w) = fi(w) Jo(p 2P 2 ) , (A-11)

- ([32_v 2) f
E( P,w) = Y fi(V,) 0Y (P 2--w2 (A-12)
-i( 'w) =4 f(w) Jl( ) (A-13)

Denoting f for the external region by re(w) one has

4iO 2
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'a, W) few) H(2)(, ) . (A-16)

One can now determine the f functions from the boundary conditions at

/o= a. Substituting into Eqs. (A-9) and (A-10) gives a pair of equations

eC) (2) (a -'/;2 fi)JOV 2 ~ j (w) , (A-17)

13-

f e(, ) (a 1 £ fI (w) J, (a/~ ) -'; J, (w) (-

The determinant of the coefficients of the f functions is recognized as

j times the Wronskian of Bessel's equation, that is

R~~ ~ J (a ;1 -w ) P = o2 (A-19)

(2) (aP13 ) -Jl(a q -
7

)

Solving Eqs. (A-16) and (A-17) by Cramer's rule gives

irF(2)a 2 wH 0 (
i(w) a ~ (R ~ ) M(w) + H( ( A-0

(w)= &aF &A z (w ] (-2)

fe 2j = J(a~ ) M(v) + J (aJ~ ) jw] (A-)

The electromagnetic field is now determined at all points in space.

Explicitly, it is given by substituting Eqs. (A-20) and (A-2l) into

Eqs. (A-11) through (A-16), and applying the inversion integral.
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APPENDIX B

On Evaluating the Ixy

Taking the transforms of the assumed currents, Eqs. (V-14) and

(V-15), one has

(w= (cos wb - cos Bb)z 2 - 2,(-l

' V' )  2(3 sin Bb - w sin wb) 2(w sin wb + c tanh ab cos wb)
= _2 a 2 +T 2

2(3 sin Ob - v sin wb) 2(w sin wb + a cos wb) (B-2)
2 _ 2 a2 +

The approximation in the second expression for 5' is permissible if a is

large, that is, if the antenna is thin. The integrals of interest, from

Eqs. (V-18) through (V-20), are

I -(, 57(w) (a H (a ; )o(a -3) )dw. (3-5)

All functions in the integrand are real except H 0 This can be

separated into its real and imaginary parts as

ImRe() (a'J 2"7)l = -IV(aV 2 I 2 ), Iv1< , (B-k)
100

2 0 t2 I1>2-K (a *- 2), I>
Ao

The integrand of Eq. (B-3) is an even function of w. Using Eqs. (B-4),

one has

Re( (i) = I- j() 57() (p4-) J2(aV - ) dw (B-5)

0Im(I y ) = 5'(W)57(w) (1 N- )o(a - ) Jo(a w )dw

0( B 6 )+ ()F~)( V K a1i2) I a".d
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It is now noted that for thin antennas, Jo (a 1 for IwI < 13.

Letting Pw = u, the real parts of the I reduce to particularly simple

forms. Noting that the second term of Eq. (B-2) is negligible compared

to the first term for lwj< p. , one has

i0 (cos 0-cos b) du (B-7)Rluu) = 1 1 - u2

1 (cos ujb -cos bA(sin b -u sin u~b) du (B-8)

Re( uv)= iu-( 2

Re(I 1- (sin Ob - u sin ub)2 du • (B-9)
Re(Ivy) 1 -u 2

These can be readily evaluated in terms of sine and cosine integrals 
or

by numerical integration.

Unfortunately, the imaginary parts of the I have not been reduced

to simple form. They can be evaluated using various approximations for

the Bessel functions. The resulting formulas are quite complex, and will

not be given in this report.
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Alternate Derivation of the Reactions

Instead of solving for the field from a cylinder of currents as a

boundary value problem, as was done in Appendix A, one can use the
i7

potential integral formulation.7  For a cylinder of z-directed electric

currents, Ez is given by

x z= a 2 w Z e-jpr"

EX(Pz) = ( 2 +z J-2 (C ___)

z4-xwm C& 2 jd$ d z r" cl
0 -b

i where

r" = ia2 + (2 _2 acos-'+ (z-z ) 2  . (c-2)

5
Using the approximation employed by Hallen, King, and Storer, Eq. (C-l)

for 4 = a becomes

* (a,z) + ; Jx 2 -J- z- dz' (C-3)

-b

This equation is accurate except in the vicinity of z = -b. It thus

effectively masks the "end effects" of the antenna. Making use of the

known integral,

j (Z T 2+a2 ~ Z 0

one can take the transform of Eq. (C-4), giving

2 2 (2)

It is noted that this is the same as obtained for the exact formulation,

Eq. (V-12), except that the term Jo(aVp"' ) is replaced by unity.

This term is approximately unity for small Pa and small w, giving a

discrepancy between Eqs. (C-5) an (V-12) only for large values of V.

This is to be expected since the behavior of E(w) as jwj-* ® is

determined by the behavior of Ex(a,z) as z - +b, and this effect wasdetermned z
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masked in the derivation of Eq. (C-5). Since iz(w) goes to zero as

e"-paIwI as w->+, it is no longer necessary to require J-(+b) = 0.

Thus, instead of Eq. (V-15), one could take

Jz(z) - cos A(b-szI) (C-6)

with Jtu(z) as given by Eq. (V-1-). The transform of i now becomesz jz

7()=2(0 sin 5b - v sin vb) j C7

appearing in Eq. (V-21) become
00

=y &1 ~f (W) 5y(w) (P2..2 H- )(a )d (C-8)

for the fomulation of this appendix. A comparison of the I as givenxy

by Eq. (C-8) with those given by Eq. (B-3) shows that only the imaginary

part of I might differ appreciably for the two formulations. A

quantitative comparison cannot be made until numerical evaluation is

attempted.
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